The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials.
نویسندگان
چکیده
The effect of increasing strut porosity on the osteoinductive ability of silicate substituted calcium phosphate (SiCaP) biomaterials was investigated in an ectopic ovine model. Implants with strut porosities of 22.5%, 32.0% and 46.0% were inserted into the parapsinalis muscle. At 8, 12 and 24 weeks histological sections were prepared. Sections were examined using backscattered scanning electron microscopy and un-decalcified histology. Bone area, implant area and bone-implant contact were quantified. At 8 weeks there was no significant difference between the groups in terms of bone area and implant area. However at 12 weeks, the amount of bone formation observed was significantly greater in SiCaP-46 (6.17 ± 1.51%) when compared with SiCaP-22.5 (1.33 ± 0.84%) p=0.035. Results also showed significantly increased amounts of bone-implant contact to the SiCaP-46 scaffold (3.30 ± 1.17%) compared with SiCaP-22.5 (0.67 ± 0.52%, p=0.043) at 8 weeks and 12 weeks; (SiCaP-46 (21.82 ± 5.59%) vs SiCaP-22.5 (3.06 ± 1.89%), p=0.012). At 24 weeks, bone formation and graft resorption had significantly increased in all groups so that the level of bone formation in the SiCaP-46 group had increased 75-fold to 30.05 ± 8.38%. Bone formation was observed in pores <10 μm. Results suggest that bone graft substitute materials with greater strut porosity are more osteoinductive.
منابع مشابه
Evaluation of Compressive Mechanical Properties of the Radial Bone Defect Treated with Selected Bone Graft Substitute Materials in Rabbit
Objective- To determine the effect of selected bone graft on the compression properties of radialbone in rabbit.Design- Experimental in vivo study.Animals- A total of 45 adult male New Zealand white rabbits.Procedures- The rabbits were anesthetized and a one-cm-full thickness piece of radial bone wasremoved using oscillating saw in the all rabbit. The rabbits were divided into 5 groups on theba...
متن کاملEvaluation of the Effect of Calcium Silicate Phosphate, Osteon, and Bio-Oss on Cell Viability and Cell Morphology of Human SaOS-2
Background and Aim: Several reports have been published on the successful application of various bone substitute materials (BSM). Appropriate physiologic and histologic characteristics and reactions of these materials against host cells are critically important. In this study, the biocompatibility of a new bone substitute material has been evaluated. Methods and Materials: In this experime...
متن کاملMapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors.
Although calcium phosphate-containing biomaterials are promising scaffolds for bone regenerative strategies, the osteoinductive capacity of such materials is poorly understood. In this study, we investigated whether endogenous mechanisms of in vivo calcium phosphate-driven, ectopic bone formation could be identified and used to induce enhanced differentiation in vitro of the same progenitor pop...
متن کاملOsteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model.
The aim of this work was to compare the osteogenicity of calcium phosphate ceramic granules with autologous bone graft in ectopic and orthotopic sites. Biphasic calcium phosphate (BCP) granules composed of hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP) in a 60/40 ratio were sintered at 1050, 1125 and 1200 degrees C, producing different microporosities. Either BCP ceramic granules ...
متن کاملSilicon-Substituted Calcium Phosphate Biomaterials-The Effect of Strut Porosity on Osteoinduction
754 ©2011 Society For Biomaterials
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 8 7 شماره
صفحات -
تاریخ انتشار 2012